Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Altern Lab Anim ; 52(2): 117-131, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38235727

RESUMO

The first Stakeholder Network Meeting of the EU Horizon 2020-funded ONTOX project was held on 13-14 March 2023, in Brussels, Belgium. The discussion centred around identifying specific challenges, barriers and drivers in relation to the implementation of non-animal new approach methodologies (NAMs) and probabilistic risk assessment (PRA), in order to help address the issues and rank them according to their associated level of difficulty. ONTOX aims to advance the assessment of chemical risk to humans, without the use of animal testing, by developing non-animal NAMs and PRA in line with 21st century toxicity testing principles. Stakeholder groups (regulatory authorities, companies, academia, non-governmental organisations) were identified and invited to participate in a meeting and a survey, by which their current position in relation to the implementation of NAMs and PRA was ascertained, as well as specific challenges and drivers highlighted. The survey analysis revealed areas of agreement and disagreement among stakeholders on topics such as capacity building, sustainability, regulatory acceptance, validation of adverse outcome pathways, acceptance of artificial intelligence (AI) in risk assessment, and guaranteeing consumer safety. The stakeholder network meeting resulted in the identification of barriers, drivers and specific challenges that need to be addressed. Breakout groups discussed topics such as hazard versus risk assessment, future reliance on AI and machine learning, regulatory requirements for industry and sustainability of the ONTOX Hub platform. The outputs from these discussions provided insights for overcoming barriers and leveraging drivers for implementing NAMs and PRA. It was concluded that there is a continued need for stakeholder engagement, including the organisation of a 'hackathon' to tackle challenges, to ensure the successful implementation of NAMs and PRA in chemical risk assessment.


Assuntos
Rotas de Resultados Adversos , Inteligência Artificial , Animais , Humanos , Testes de Toxicidade , Medição de Risco , Bélgica
2.
ALTEX ; 40(3): 367-388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37470349

RESUMO

The EU's REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) Regulation requires animal testing only as a last resort. However, our study (Knight et al., 2023) in this issue reveals that approximately 2.9 million animals have been used for REACH testing for reproductive toxicity, developmental toxicity, and repeated-dose toxicity alone as of December 2022. Currently, additional tests requiring about 1.3 million more animals are in the works. As compliance checks continue, more animal tests are anticipated. According to the European Chemicals Agency (ECHA), 75% of read-across methods have been rejected during compliance checks. Here, we estimate that 0.6 to 3.2 million animals have been used for other endpoints, likely at the lower end of this range. The ongoing discussion about the grouping of 4,500 regis-tered petrochemicals can still have a major impact on these numbers. The 2022 amendment of REACH is estimated to add 3.6 to 7.0 million animals. This information comes as the European Parliament is set to consider changes to REACH that could further increase animal testing. Two proposals currently under discussion would likely necessitate new animal testing: extending the requirement for a chemical safety assessment (CSA) to Annex VII substances could add 1.6 to 2.6 million animals, and the registration of polymers adds a challenge comparable to the petrochemical discussion. These findings high-light the importance of understanding the current state of REACH animal testing for the upcoming debate on REACH revisions as an opportunity to focus on reducing animal use.


Assuntos
Alternativas aos Testes com Animais , Testes de Toxicidade , Animais , Alternativas aos Testes com Animais/métodos , Testes de Toxicidade/métodos , Medição de Risco/métodos
3.
ALTEX ; 39(4): 543-559, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36317779

RESUMO

Scientists are usually good at teaching, sometimes even to lay audiences. But communicating with journalists, activists, or policymakers can be a different story - hesitancy to make mistakes as well as the temptation to disproportionally promote one's own case come into play. The multitude of social media and other web-based outlets has diversified and accelerated the communication of science. Real-time reactions, sharing of data, tools and results, increasing invitation of personal opinion, demand for transparency, political correctness, and loss of trust in experts are challenges to researchers in general. The field of alternatives to animal testing is more political and important to lay audiences than many others, so its scientists must be especially aware of these challenges. Public engagement offers the opportunity to form community and create wide support for non-animal research and its implementation. This requires scientists to step out of the ivory tower of higher education and engage with diverse interest groups by outreach activities, interviews, and press releases, etc. by employing tailored communication.


Assuntos
Alternativas aos Testes com Animais , Opinião Pública , Animais
4.
Artigo em Inglês | MEDLINE | ID: mdl-36293571

RESUMO

Humans are involuntarily exposed to hundreds of chemicals that either contaminate our environment and food or are added intentionally to our daily products. These complex mixtures of chemicals may pose a risk to human health. One of the goals of the European Union's Green Deal and zero-pollution ambition for a toxic-free environment is to tackle the existent gaps in chemical mixture risk assessment by providing scientific grounds that support the implementation of adequate regulatory measures within the EU. We suggest dealing with this challenge by: (1) characterising 'real-life' chemical mixtures and determining to what extent they are transferred from the environment to humans via food and water, and from the mother to the foetus; (2) establishing a high-throughput whole-mixture-based in vitro strategy for screening of real-life complex mixtures of organic chemicals extracted from humans using integrated chemical profiling (suspect screening) together with effect-directed analysis; (3) evaluating which human blood levels of chemical mixtures might be of concern for children's development; and (4) developing a web-based, ready-to-use interface that integrates hazard and exposure data to enable component-based mixture risk estimation. These concepts form the basis of the Green Deal project PANORAMIX, whose ultimate goal is to progress mixture risk assessment of chemicals.


Assuntos
Misturas Complexas , Poluição Ambiental , Compostos Orgânicos , Humanos , Misturas Complexas/toxicidade , Poluição Ambiental/efeitos adversos , Compostos Orgânicos/toxicidade , Medição de Risco/métodos , União Europeia
5.
IEEE J Biomed Health Inform ; 26(11): 5282-5286, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35951559

RESUMO

In Silico Trials methodologies will play a growing and fundamental role in the development and de-risking of new medical devices in the future. While the regulatory pathway for Digital Patient and Personal Health Forecasting solutions is clear, it is more complex for In Silico Trials solutions, and therefore deserves a deeper analysis. In this position paper, we investigate the current state of the art towards the regulatory system for in silico trials applied to medical devices while exploring the European regulatory system toward this topic. We suggest that the European regulatory system should start a process of innovation: in principle to limit distorted quality by different internal processes within notified bodies, hence avoiding that the more innovative and competitive companies focus their attention on the needs of other large markets, like the USA, where the use of such radical innovations is already rapidly developing.

6.
Toxicology ; 458: 152846, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34216698

RESUMO

The 3Rs concept, calling for replacement, reduction and refinement of animal experimentation, is receiving increasing attention around the world, and has found its way to legislation, in particular in the European Union. This is aligned by continuing high-level efforts of the European Commission to support development and implementation of 3Rs methods. In this respect, the European project called "ONTOX: ontology-driven and artificial intelligence-based repeated dose toxicity testing of chemicals for next generation risk assessment" was recently initiated with the goal to provide a functional and sustainable solution for advancing human risk assessment of chemicals without the use of animals in line with the principles of 21st century toxicity testing and next generation risk assessment. ONTOX will deliver a generic strategy to create new approach methodologies (NAMs) in order to predict systemic repeated dose toxicity effects that, upon combination with tailored exposure assessment, will enable human risk assessment. For proof-of-concept purposes, focus is put on NAMs addressing adversities in the liver, kidneys and developing brain induced by a variety of chemicals. The NAMs each consist of a computational system based on artificial intelligence and are fed by biological, toxicological, chemical and kinetic data. Data are consecutively integrated in physiological maps, quantitative adverse outcome pathway networks and ontology frameworks. Supported by artificial intelligence, data gaps are identified and are filled by targeted in vitro and in silico testing. ONTOX is anticipated to have a deep and long-lasting impact at many levels, in particular by consolidating Europe's world-leading position regarding the development, exploitation, regulation and application of animal-free methods for human risk assessment of chemicals.


Assuntos
Inteligência Artificial , Ontologia Genética , Testes de Toxicidade , Alternativas aos Testes com Animais , Animais , Simulação por Computador , União Europeia , Humanos , Técnicas In Vitro , Medição de Risco
7.
Toxicol Sci ; 183(1): 14-35, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34109416

RESUMO

Originally developed to inform the acute toxicity of chemicals on fish, the zebrafish embryotoxicity test (ZET) has also been proposed for assessing the prenatal developmental toxicity of chemicals, potentially replacing mammalian studies. Although extensively evaluated in primary studies, a comprehensive review summarizing the available evidence for the ZET's capacity is lacking. Therefore, we conducted a systematic review of how well the presence or absence of exposure-related findings in the ZET predicts prenatal development toxicity in studies with rats and rabbits. A two-tiered systematic review of the developmental toxicity literature was performed, a review of the ZET literature was followed by one of the mammalian literature. Data were extracted using DistillerSR, and study validity was assessed with an amended SYRCLE's risk-of-bias tool. Extracted data were analyzed for each species and substance, which provided the basis for comparing the 2 test methods. Although limited by the number of 24 included chemicals, our results suggest that the ZET has potential to identify chemicals that are mammalian prenatal developmental toxicants, with a tendency for overprediction. Furthermore, our analysis confirmed the need for further standardization of the ZET. In addition, we identified contextual and methodological challenges in the application of systematic review approaches to toxicological questions. One key to overcoming these challenges is a transition to more comprehensive and transparent planning, conduct and reporting of toxicological studies. The first step toward bringing about this change is to create broad awareness in the toxicological community of the need for and benefits of more evidence-based approaches.


Assuntos
Testes de Toxicidade , Peixe-Zebra , Animais , Feminino , Gravidez , Coelhos , Ratos
8.
Environ Int ; 154: 106574, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33895441

RESUMO

BACKGROUND: Exposure to endocrine disrupting chemicals (EDCs) represents a critical public health threat. Several adverse health outcomes (e.g., cancers, metabolic and neurocognitive/neurodevelopmental disorders, infertility, immune diseases and allergies) are associated with exposure to EDCs. However, the regulatory tests that are currently employed in the EU to identify EDCs do not assess all of the endocrine pathways. OBJECTIVE: Our objective was to explore the literature, guidelines and databases to identify relevant and reliable test methods which could be used for prioritization and regulatory pre-validation of EDCs in missing and urgent key areas. METHODS: Abstracts of articles referenced in PubMed were automatically screened using an updated version of the AOP-helpFinder text mining approach. Other available sources were manually explored. Exclusion criteria (computational methods, specific tests for estrogen receptors, tests under validation or already validated, methods accepted by regulatory bodies) were applied according to the priorities of the French Public-privatE Platform for the Pre-validation of Endocrine disRuptors (PEPPER) characterisation methods. RESULTS: 226 unique non-validated methods were identified. These experimental methods (in vitro and in vivo) were developed for 30 species using diverse techniques (e.g., reporter gene assays and radioimmunoassays). We retrieved bioassays mainly for the reproductive system, growth/developmental systems, lipogenesis/adipogenicity, thyroid, steroidogenesis, liver metabolism-mediated toxicity, and more specifically for the androgen-, thyroid hormone-, glucocorticoid- and aryl hydrocarbon receptors. CONCLUSION: We identified methods to characterize EDCs which could be relevant for regulatory pre-validation and, ultimately for the efficient prevention of EDC-related severe health outcomes. This integrative approach highlights a successful and complementary strategy which combines computational and manual curation approaches.


Assuntos
Disruptores Endócrinos , Inteligência Artificial , Bioensaio , Disruptores Endócrinos/toxicidade , Sistema Endócrino , Receptores de Estrogênio
9.
Arch Toxicol ; 94(7): 2435-2461, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32632539

RESUMO

Hazard assessment, based on new approach methods (NAM), requires the use of batteries of assays, where individual tests may be contributed by different laboratories. A unified strategy for such collaborative testing is presented. It details all procedures required to allow test information to be usable for integrated hazard assessment, strategic project decisions and/or for regulatory purposes. The EU-ToxRisk project developed a strategy to provide regulatorily valid data, and exemplified this using a panel of > 20 assays (with > 50 individual endpoints), each exposed to 19 well-known test compounds (e.g. rotenone, colchicine, mercury, paracetamol, rifampicine, paraquat, taxol). Examples of strategy implementation are provided for all aspects required to ensure data validity: (i) documentation of test methods in a publicly accessible database; (ii) deposition of standard operating procedures (SOP) at the European Union DB-ALM repository; (iii) test readiness scoring accoding to defined criteria; (iv) disclosure of the pipeline for data processing; (v) link of uncertainty measures and metadata to the data; (vi) definition of test chemicals, their handling and their behavior in test media; (vii) specification of the test purpose and overall evaluation plans. Moreover, data generation was exemplified by providing results from 25 reporter assays. A complete evaluation of the entire test battery will be described elsewhere. A major learning from the retrospective analysis of this large testing project was the need for thorough definitions of the above strategy aspects, ideally in form of a study pre-registration, to allow adequate interpretation of the data and to ensure overall scientific/toxicological validity.


Assuntos
Documentação , Processamento Eletrônico de Dados/legislação & jurisprudência , Regulamentação Governamental , Testes de Toxicidade , Toxicologia/legislação & jurisprudência , Animais , Células Cultivadas , Europa (Continente) , Humanos , Formulação de Políticas , Reprodutibilidade dos Testes , Estudos Retrospectivos , Medição de Risco , Terminologia como Assunto , Peixe-Zebra/embriologia
10.
Arch Toxicol ; 94(6): 2263-2272, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32447523

RESUMO

The COVID-19-inducing virus, SARS-CoV2, is likely to remain a threat to human health unless efficient drugs or vaccines become available. Given the extent of the current pandemic (people in over one hundred countries infected) and its disastrous effect on world economy (associated with limitations of human rights), speedy drug discovery is critical. In this situation, past investments into the development of new (animal-free) approach methods (NAM) for drug safety, efficacy, and quality evaluation can be leveraged. For this, we provide an overview of repurposing ideas to shortcut drug development times. Animal-based testing would be too lengthy, and it largely fails, when a pathogen is species-specific or if the desired drug is based on specific features of human biology. Fortunately, industry has already largely shifted to NAM, and some public funding programs have advanced the development of animal-free technologies. For instance, NAM can predict genotoxicity (a major aspect of carcinogenicity) within days, human antibodies targeting virus epitopes can be generated in molecular biology laboratories within weeks, and various human cell-based organoids are available to test virus infectivity and the biological processes controlling them. The European Medicines Agency (EMA) has formed an expert group to pave the way for the use of such approaches for accelerated drug development. This situation illustrates the importance of diversification in drug discovery strategies and clearly shows the shortcomings of an approach that invests 95% of resources into a single technology (animal experimentation) in the face of challenges that require alternative approaches.


Assuntos
Alternativas aos Testes com Animais , Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Avaliação Pré-Clínica de Medicamentos/métodos , Pandemias/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/prevenção & controle , Vacinas Virais , Betacoronavirus , COVID-19 , Vacinas contra COVID-19 , Desenvolvimento de Medicamentos , Reposicionamento de Medicamentos , Humanos , SARS-CoV-2
11.
ALTEX ; 37(2): 167-186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32242634

RESUMO

Seven years after the last release, the European Commission has again collated and released data on laboratory animal use. The new report is the first to correspond to the requirements of the new Directive 2010/63/EU. Beside minor problems in reporting, the new reporting format is a major step forward, with additional new categories like severity allowing insight into animal use related questions that goes far beyond the previous reports. An in-depth analysis confirms a slight decrease in animal use from 2015 to 2017, but also compared to the 2005, 2008 and 2011 reports, though the new reporting scheme makes this comparison difficult. Notable success is evident for replacing rabbit pyrogen testing but, in general, the implementation of accepted alternative methods lags behind expec-tations. Beside the roughly 10 million animals per year covered in the report, about 8 million animals were identified that fall under the Directive but are not included in this number. Their omission downplays the impact of REACH on animal use. The report, second to none in its detail internationally, represents an important instrument for benchmarking and strategi-cally focusing activities in the 3Rs.


Assuntos
Alternativas aos Testes com Animais/estatística & dados numéricos , União Europeia , Ciência dos Animais de Laboratório/métodos , Ciência dos Animais de Laboratório/estatística & dados numéricos , Animais , Benchmarking , Interpretação Estatística de Dados
12.
ALTEX ; 37(1): 164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31960940

RESUMO

In this manuscript, which appeared in ALTEX (2019), 36(4), 682- 699, doi:10.14573/altex.1909271 , the affiliation of Hennicke Kamp should be Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany. Further, the reference to an article by Bal-Price et al. (2015) should have the following doi:10.1007/s00204-015-1464-2 .

13.
ALTEX ; 36(4): 682-699, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31658359

RESUMO

Only few cell-based test methods are described by Organisation for Economic Co-operation and Development (OECD) test guidelines or other regulatory references (e.g., the European Pharmacopoeia). The majority of toxicity tests still falls into the category of non-guideline methods. Data from these tests may nevertheless be used to support regulatory decisions or to guide strategies to assess compounds (e.g., drugs, agrochemicals) during research and development if they fulfill basic requirements concerning their relevance, reproducibility and predictivity. Only a method description of sufficient clarity and detail allows interpretation and use of the data. To guide regulators faced with increasing amounts of data from non-guideline studies, the OECD formulated Guidance Document 211 (GD211) on method documentation for the purpose of safety assessment. As GD211 is targeted mainly at regulators, it leaves scientists less familiar with regulation uncertain as to what level of detail is required and how individual questions should be answered. Moreover, little attention was given to the description of the test system (i.e., cell culture) and the steps leading to it being established in the guidance. To address these issues, an annotated toxicity test method template (ToxTemp) was developed (i) to fulfill all requirements of GD211, (ii) to guide the user concerning the types of answers and detail of information required, (iii) to include acceptance criteria for test elements, and (iv) to define the cells sufficiently and transparently. The fully annotated ToxTemp is provided here, together with reference to a database containing exemplary descriptions of more than 20 cell-based tests.


Assuntos
Testes de Toxicidade/métodos , Animais , Estudos de Avaliação como Assunto , Humanos , Organização para a Cooperação e Desenvolvimento Econômico , Reprodutibilidade dos Testes , Projetos de Pesquisa , Testes de Toxicidade/normas
14.
Toxicol In Vitro ; 59: 51-54, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30954652

RESUMO

Young researchers dedicate rightfully most of their time to core knowledge production via laboratory experiments, reading peer-review literature, publishing own results, attending conferences whenever possible as well as undertaking trainings on writing grants, papers among many other activities However, the authors argue here that restricting them to this unique set of activities is jeopardizing creativity and reducing awareness of a more complex picture in science. Other fields linked with social sciences, including scientometrics and epistemological areas covered during conferences and continuous education, may contribute to a more productive working environment for young researchers. To illustrate this, a smart use of social media is described as well as an example of a session. Furthermore, some general suggestions for implementing these activities and opening silos are discussed to increase creative thinking and to make in fine better science.


Assuntos
Pesquisa , Mídias Sociais , Disciplinas das Ciências Biológicas , Criatividade , Humanos
16.
ALTEX ; 34(1): 3-21, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28105478

RESUMO

The practice of risk assessment and regulation of substances has largely developed as a patchwork of circumstantial additions to a nowadays more or less shared international toolbox. The dominant drivers from the US and Europe have pursued remarkably different approaches in the use of these tools for regulation, i.e., a more risk-based approach in the US and a more precautionary approach in Europe. We argue that there is need for scientific developments not only for the tools but also for their application, i.e., a need for Regulatory Science or, perhaps better, Safety Science. While some of this is emerging on the US side as strategic reports, e.g., from the National Academies, the NIH and the regulatory agencies, especially the EPA and the FDA, such strategic developments beyond technological developments are largely lacking in Europe or have started only recently at EFSA, ECHA or within the flagship project EU-ToxRisk. This article provides a rationale for the creation of a European Safety Sciences Institute (ESSI) based on regulatory and scientific needs, political context and current EU missions. Moreover, the possible modus operandi of ESSI will be described along with possible working formats as well as anticipated main tasks and duties. This mirrors the triple alliance on the American side (US EPA, NIH and FDA) in revamping regulatory sciences. Moreover, this could fit the political agenda of the European Commission for better implementation of existing EU legislation rather than creating new laws.


Assuntos
Pesquisa Biomédica/legislação & jurisprudência , Regulamentação Governamental , Formulação de Políticas , Desenvolvimento de Programas/normas , Segurança/legislação & jurisprudência , Toxicologia/legislação & jurisprudência , Pesquisa Biomédica/organização & administração , Europa (Continente) , Política de Saúde , Cooperação Internacional , Medição de Risco , Toxicologia/organização & administração
17.
Drug Discov Today ; 22(2): 327-339, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27989722

RESUMO

Decades of costly failures in translating drug candidates from preclinical disease models to human therapeutic use warrant reconsideration of the priority placed on animal models in biomedical research. Following an international workshop attended by experts from academia, government institutions, research funding bodies, and the corporate and non-governmental organisation (NGO) sectors, in this consensus report, we analyse, as case studies, five disease areas with major unmet needs for new treatments. In view of the scientifically driven transition towards a human pathways-based paradigm in toxicology, a similar paradigm shift appears to be justified in biomedical research. There is a pressing need for an approach that strategically implements advanced, human biology-based models and tools to understand disease pathways at multiple biological scales. We present recommendations to help achieve this.


Assuntos
Pesquisa Biomédica , Descoberta de Drogas , Doença de Alzheimer , Animais , Asma , Transtorno do Espectro Autista , Doenças Autoimunes , Consenso , Fibrose Cística , Humanos , Hepatopatias , Modelos Animais
18.
ILAR J ; 57(3): 358-367, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29117402

RESUMO

In the context of the current negotiations between the European Union (EU) and the United States under the Transatlantic Trade Investment Partnership (TTIP), there is the opportunity to look at both legislative frameworks to better pinpoint convergences, synergies, and gaps when it comes to use of laboratory animals for scientific purposes and bring together the best of both worlds. The objectives in this article are to indicate what are the current EU pieces of legislation that are relevant under TTIP regarding the uses of laboratory animals for scientific purposes under the regulations about cosmetics and chemicals, among others. The same approach will be taken to look at the relevant American legal frameworks, that is, the Food and Cosmetics Act and the Toxic Safety Control Act as well as its most recent reauthorization. In conclusion, the authors will identify future frameworks that can contribute to the harmonization of regulatory standards and further steps where TTIP negotiators should strengthen regulatory cooperation.

19.
ALTEX ; 32(4): 261-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26536288

RESUMO

To investigate long-term trends of animal use, the EU animal use statistics from the 15 countries that have been in the EU since 1995 plus respective data from Switzerland were analyzed. The overall number of animals used for scientific purposes in these countries, i.e., about 11 million/year, remained relatively constant between 1995 and 2011, with net increases in Germany and the UK and net decreases in Belgium, Denmark, Italy, Finland, the Netherlands and Sweden. The relatively low and constant numbers of experimental animals used for safety assessment (toxicology, 8%) may be due to the particularly intensive research on alternative methods in this area. The many efficiently working NGOs, multiple initiatives of the European Parliament, and coordinated activities of industry and the European Commission may have contributed to keeping the animal numbers in this field in check. Basic biological science, and research and development for medicine, veterinary and dentistry together currently make up 65% of animal use in science. Although the total numbers have remained relatively constant, consumption of transgenic animals has increased drastically; in Germany transgenic animals accounted for 30% of total animal use in 2011. Therefore, more focus on alternatives to the use of animals in biomedical research, in particular on transgenic animals, will be important in the future. One initiative designed to provide inter-sector information exchange for future actions is the "MEP - 3Rs scientists pairing scheme" initiated in 2015 by CAAT-Europe and MEP Pietikäinen.


Assuntos
Alternativas aos Testes com Animais/tendências , Animais de Laboratório , Pesquisa Biomédica , Animais , Animais Geneticamente Modificados , União Europeia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...